
UNCLASSIFIED

AD NUMBER
AD896220

CLASSIFICATION CHANGES

TO: unclassified

FROM: restricted

LIMITATION CHANGES

TO:
Approved for public release, distribution
unlimited

FROM:

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; 14 JUL
1952. Other requests shall be referred to
Naval Proving Ground, Dahlgren, VA.

AUTHORITY
E.O. 10501, 5 Nov 1953; USNWC ltr, 14 Aug
1975

THIS PAGE IS UNCLASSIFIED



THI1S REPORTHAS. BEEN. DELIMITED

AND CLEARED'FOR PUBLIC RELEASE.

UNDER.LOD DIRECTI~VE 5200.020 AD
NO RESTRICTIONS. ARE IMOSED UPON
I .3 -USE. ANI DICOSURE.

DISTRIBUTION STATEJEN A

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION. VALIflhTED6



1CA 
-

IU

U, S,, NAVAL PROVING GROUND

S, A '.g. DAiKLGREN, VIRGINIA

,, -REPORT NOW 95u4

THE FOUNDATIONAL RESEARCH PROGRAM

OF THE NAVAL PROVING GROUND

Lxý 3rd Partial Report

AtVALYTICAL SUMMARY PART V PLASTIC FLOW

IN BARS AND SHELLS

FINAL Report

• • • Copy No. _ Classification

SECURITY iNFRMATION

LIBRAY OF CONGRESSI .RE.Ir,, DEPARTMEM

L�,�.�~ P4. ~ J ION Dt:.
LAEJ-



- I

4 UNCLASSIFIED

NPG REPORT HO. 954

Analytical Summary Part V Plastic flow in bars and shells

PART A

SYNOPSIS

An analysis is made of elastic and plastic equilibria in a triangular
sheet and in a cylindrical shell. The published data on the deformation
and fracture of bars and tubes are reviewed and summarized. 'Stress-strain
diagrams and deformation contours have been obtained on tension and compres-
sion specimens of the steel in 37mm PP Type T21 projectiles. The von Karman
theory for the propagation of plastic waves in bars is reviewed. The role
of the rotation of the axes of strain rate, and the appearance of irrota-
tional flow are analysed.- Deformation contours, stream lines and contoursi of equal velocity potential are given foche irrotational flow in a bar or
jet. A few 37mm PP Type T21 projectiles have been fired at an unyielding
plate. An analysis is made of the plastic flow and fracture In the pro-
jectiles, as revealed by sectioning and etching.
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E FOREWORD

The material in this report has been prepared since World War II
in connection with a study of the mechanisms of penetration of plate
by projectiles. The report i3 one of a series of reports. Five of
the reports were published at the end of the war, ana it was originally
planned that nine reports would be submitted altogether. The remaining
four reports were held up pending a revaluation of the ballistic data,
inasmuch as there was an opportunity to obtain a few additional tests
of special interest at the end of the war. As a result of these tests,
the number of reports has been increased to eleven. The six remaining
reports are now to be published, but with a minimum expenditure of
additional effort in order to bring forth the existing material. TheI analysis has probably been carried as far as it should be carried without
the aid of a modern calculator such as the Mark III Aiken Electrconic
Calculator. The press of urgent work has thus far prevented allocation
of any Mark III time to this work.

RESTRICTED
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The titles of the full set of eleven reports are as follows:

TRIAXIAL STRESS. NPG Report No. 6-46

of Class B Armor and STS under triaxial stress.

(2) ANALYTICAL SUMMARY. PART II. ELASTIC AND PLASTIC UNDULATIONS IN
ARMOR PLATE. NPG Report No. 7-46

Object: To analyse the propagation of undulations in armor plate;
to summarize previous analytical work and to add new
analytical work where required in order to complete the
theory for ballistic applications.

(3) ANALYTICAL SUMMARY. PART III. PLASTIC ?LOW IN ARMOR PLATE.
NPG Report No. 864

Object: To analyse the plastic flow in armor plate adjacent to the
point of impact by a projectile.

(4) ANALYTICAL SUMMARY. PART IV. THE THEORY OF ARMOR PENETRATION.
NPG Report No. 9-46

Object: To summarize the theory of armor penetration in its present
state of development, and to develop theoretical functions
which can be used as a guide in the interpretation of
ballistic data.

(5) ANALYTICAL SUMMARY. PART V. PLASTIC FLOW IN BARS AND SHELLS.
NPG Report No. 954

Object: To analyse the plastic flow in cylindrical bars and shells
during impact against an unyielding plate.

(6) ANALYTICAL SUMMARY. PART VI. THE THEORY OF PROJECTILE RICOCHET.
(In preparation.)

Object: To analyse the dynamics of projectiles during oblique impact,
and to develop thecretical functions which can be used as a
guide in the interpretation of ballistic data.

RESTRICTED
'SECURITY INFORMATION 4
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(7) BALLISTIC SUMMARY. PART I. THE DEPENDENCE OF LIMIT VELOCITY ON
PLATE THICKNESS AND OBLIQUITY AT LOW OBLIQUITY. NPG Report No. 2-46.

Object: To compare the results of ballistic test with the prediction
of existing formulae, and with the results of theoretical
analysis; to find the mathematical functions which best
represent the fundamental relationship between limit velocity,
plate thickness, and obliquity at low obliquity.

(8) BALLISTIC SUMMARY. PART II. THE SCALE EFFECT AND THE OGIVE EFFECT.
NPG Report No. 4-46

Object: To determine the effect of scale on ballistic performance,
and to correlate the projectile nose shape with the results
of ballistic test.

(9) BALLISTIC SUMMARY. PART III. THE WINDSHIELD EFFECT, THE i1)1D EFFECT,
AND THE CAP EFFECT. (In preparation.)

Object: To determine the effect of windshields and hoods or caps on
ballistic performance.

(10) BALLISTIC SUMMARY. PART IV. THE DEPENDENCE OF LIMIT VELOCITY ON
PLATE THICKNESS AND OBLIQUITY AT HIGH OBLIQUITY. (In preparation.)

Object: To compare the results of ballistic test with the results of
theoretical analysis; to find mathematical functions which
best represent the fundamental relationship between limit
velocity, plate thickness, and obliquity at high obliqaity.

(11) BALLISTIC SUMMARY. PART V. THE CONSTRUCTION OF PLATE PENETRATION
CHARTS OR TABLES. (In preparation.)

Object: To summarize the results of analysis in the form of standard
charts or tables.

RESTRICTED
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AUTHORITY

The material in this report is supplementary to the construction of
plate penetration charts or tables. It was originally authorized by BUORD
letter NP9/A9 (Re3) dated 9 January 1943, was later charged to Task Assign-
ment NPG-41-Re3a-118-1, (Dynamics of Armor Penetration), and is currently
charged to the foundational research program of the Naval Proving Ground.

OBJECT

To analyse the plastic flow in cylindrical bars and shells during
impact against an unyielding plate.

RESTRICTED
SECURITY INFORMATION 6
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INTRODUCTION

A star crack is formed in a thin plate during impact by a pointed
projectile. The petals at the impact are pushed back by the projectile
during penetration and absorb energy. In order to obtain a guide in the
calculation of this energy, especially for oblique impact, an analysis
has been made of the plastic deformation of a plane triangular sheet or
quadrant.

Part of the energy which is required by a projectile for the penetra-
tion of armor may be lost in the projectile itself. The energy may be
stored in the plastic deformation of the projectile, or may be carried
off in the form of kinetic energy by flying fragments. Even though the
body of a service projectile is undeformed, the cap or hood and windshield
usually absorb energy by deformation.

An analysis of the plastic deformation of a simple cylindrical shell
under axial loading is given in the reports of references (1) to (4).
An elementary theory of plastic deformation in cylindrical shells under
other conditions of loading is given in the present report. A partial
analysis of the plastic flow in a long cylindrical bar under impact
loading has been published in the reports of references (13) to (20),
and is summarized and reviewed in the present report. The published
theory does not include the effects of irrotational flow, or of rotation
of the principal axes of strain rate, which are therefore analysed in
the present report.

The results of analysis are applied to the theory of armor penetra-
tion in references (24) and (25).

The state of strain has been defined throughout this series of re-ports in terms of the function

in which el, e2 , es are the principal components of the conventional
strain, but this function has been incorrectly referred to as the
octahedral shear strain. The true shearing displacement between octahedral

RESTRICTED
SECURITY INFORMATION 7
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planes is given by the expression

- ((l+ei) 2 + (1+e 2 )2 + (1+es) 2) - 3
3 1 1 1

(1+el) 2  (1+e,) 2) (1+es) 2

which may be simplified to the expression

2 2

- i (el-e2 )2 + (e2 -es) 2 + (es-e 1 )
3

in the limiting case of small strains. This limiting expression, with the
conventional strains. e, e., e8 replaced by the natural strains log (1+ei),
log (1+e! ), log (1+es), is frequently called the octahedral shear strain by
contributors to the current literature.

The state of strain in an isotropic medium is actually defined by the
three separate components of strain el, e2, es. The state of strain may
be expressed in terms of any set of functions of these components. Thus
it is convenient to use a set of cylindrical polar functions, of which the
variable

=v(e-e)2+ (e2-es) (es-e 1 )
1/3

is the radial coordinate. The use of any one of these three expressions is
considered in these reports to be justified only on the basis of empirical
representation, not on the basis of their accidental proportionality to the
octahedral shear strain in the limiting case of small strains The choice
of factor between 5 2 1 is therefore arbitrary, but the term octahedral
shear strain should properly be restricted to the factor 9, if used at all,
in conformity with the accepted convention. The function

! v -e2)2 + T e2 -es)Q + (es-e.)3

will tnerefore hereinafter be called the shear strain functioqn.

gI

RESTRICTED
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PLASTIC EQUILIBRIUM

The Plastic Deformation of a Triangular Sheet at Equilibrium.

Let an isoceles triangle be subject to symmetrical edge stresses on
its base line and be free of stress on the two equal edges,

A complete analysis of the stress distribution in a triangle or sector
would be complicated by the presence of both elastic and plastic zones. An
analysis of the elastic deformation under a weak stress shows the point of
initiation of plastic flow under increasing stress. A representative
analysis has been completed for the special case of a quadrant.

The equations of elastic deformation have been reviewed in reference
(22). The stress tensor T is expressed in terms of the displacement 6r
by the equation

XV = ?ArI + g(VAr + V*Ar) (1)

in which I is the unitary tensor, V&r is the tensor gradient of Ar, V*6r
is the transposed form of VAr, and X, g are elastic constants. The
equation of equilibrium is

S= (X+WL) VAr + [vVAr = 0

Let the components of displacement and stress be expressed in terms of
cylindrical polar coordinates r, 0, z, and in terms of vectors of unit
length el, e, es in the radial, azimuthal, and axial directions. The
first particular solution of the equations of equilibrium is given by the
equation

er = rv+lcos(v+2)qk El - rV+lsin(V+2)4' •2

for which the components of stress are given by the equations

X = +24.(v+l)rvcos(v+2)k

X2= -2ýL(V+l)rvcos(v+2)0 (4)

X12= =-2g(v+l)rvsin(v+2)4

The second particular solution of the equations of equilibrium is

RESTRICTED
'SECURITY INFORMATION 9
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given by the equation

Ar = + {(v+1 - LrV+cosvk - 2v(v+1) - -zrv- 1cosv}) 61

-(0+ +- -1) ÷sinvo- 2v(v+1) 3--2Z rv-isinv•6) e (5)

+ t4(v+l) ZrV cosvE} s
3 X+2g

for which the components of stress are given by the equations

X11 = + 2(V+l)(v-2)LtrVcosvb - 4v(V0-1) 3 • z2rrVcosvqk
3X+2ýL 

v

122 = - 2(v+l)(v+2)grVcosvq6 + 4v(v2-1) X--z r V-2cosv- (6)
3 X+2p.

1= - 2v(v+l)grvsinv0 + 4v(v 2 -1) t z 2 rV2sinvb

Both solutions are symmetric with respect to the median line at 'k = 0, and
both solutions satisfy the boundary conditions at the plane faces of the
sector, which are free of stress. A linear combination of the two solu-
tions may be so adjusted as to satisfy the boundary conditions at theradial edges of the sector, which are also free of stress. The boundaryconditions for a sector of arc (1/N)2n are expressed by the equations

IE
112 = X2 = 0 at k = ± , z = 0 -(7)

The boundary equations are a pair of homogeneous linear equations in a
pair of arbitrary constants, which can have a non trivial solution only
if the determinant of the equations is zero. The determinant vanishes if
the constant v satisfies the transcendental equation

tI[
sin2(v+l) - + (v+l)sin2 - = 0 (8)

The only real root of the equation is v = -1, which is the trivial
value for a rigid displacement without strain. There is an infinite
series of complex roots, however, the first few of which are listed in
Table I for the case of a quadrant. The complex roots lead to complex
functions for the displacement and stress. The real parts and the
imaginary parts of Uhe complex functions must separately satisfy the
equations of equilibrium, and represent therefore a pair of independent
solutions. A linear combination of pairs of solutions of all orders

RESTRICTED
SECURITY INFORMATION 10

L



RESTRICTED NPG REPORT NO. 954

Analytical Summary Part V Plastic flow in bars and shells

will give any arbitrary symmetric displacement at the arc of a sector or
at the base of a triangle. The pair of lowest order is given in Table II
for the case of a quadrant.

The functions in the table are so adjusted that the real and imaginary
parts of 1.1 are equal to unity when r = /2 and k = ± !!. The functions are
so arranged that the real parts are associated with the stretching and the
imaginary parts are associated with the bending of a straight base line whose
equation is rcosqb = I. The normal stress across the base line varies from
a compression stress at the center to a tension stress at the ends. The
shear stress across the base line is zero at the center and is a maximum at
the ends. The octahedral shear stress is a maximum at the ends of the base
line.

As the base line is stretched and bent, a plastic zone appears and the
shear stress on the base line is redistributed. Plastic flow occurs under
the conditions of plane stress. The components of stress satisfy the
condition of plastic yielding

VX11 X11122 + X22 + 3XQ1 = X' (9)

in which X' is the yield stress in the conventional tensile test. The yield
condition is satisfied if the components of stress are expressed in terms of
the parametric variables 01, e2 by the equations

11.= X'sine1 - -X 'coseisin20e2
It

X22 = I'sine +_ X'cose 1 sin2e2
V/3 (10)

1 = -= X'coselcos2e2

Let the components of stress be referred to cartesian axes and let e0, 80
be expressed in terms of cartesian coordinates x, y. The components of
stress satisfy the equations of equilibrium

U.+ =a22 0i -ax 'ay (

a1 2 + a22 2 0
ax

Substitution of the functions of 01, 02 for the components of stress in

RESTRICTED
SECURITY INFORMATION 11
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the equations of equilibrium leads to a pair of homogeneous linear equations
in the derivatives of 01, 02 with respect to x, y. Linear combinations of
the equations may be found which are exact differentials. The linear combina-
tions are

FV1 1- sin2oi -66e2 '30,
' l-in - (-dx + -dy) + (dx + -2 dy) =0 (12)

cose6 •y BX

if vhe differentials dx, dy satisfy the equation

dy 1 17t
-tan (± - cos-' tan 6, + e2 - -) (13)

dx 2 s3 4

This is the differential equation for the characteristics, along which the
functions

1 (I-4sin2 O1 )±cos- 1  cos6 , + 62

are constants. The change in 61, 62 along a closed contour is zero. The
change in 62 between any two characteristics of one family of character-
istics is therefore constant along any characteristic of the other family
of characteristics. The angle 02 is the angle between the plane of maximum
shearing stress and the x axis. The angles between characteristics are
bisected by the principal axes of stress.

Let the cartesian components of velocity in the plastic flow be x, 5.
The rate of strain is proportional to the deviation of the stress from
isotropic tension, and the components of the rate of strain therefore
satisfy the equations

'ax 2_ 2ay 1> A ___

-2 - > Ž0 (14)2XII± - X22 3 X12 2X2 X11•- •

Substitution of the functions of 01, 02 for the components of stress in
these equations leads to a pair of homogeneous linear equations in the
derivatives of O, j with respect to x, y. Linear combinations of the equa-
tions may-be-found which are exact differentials along the characteristics.

RESTRICTED
SECURITY INFORMATION 12
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The linear combinations are

dy a5
(-dx + -dy) + - (-dx A--dy) =0 (5

ax ay dzx Zx

The variation of the velocity vector along each characteristic is therefore
everywhere orthogonal to the characteristic.

If the base of the triangle is stretched until the base line is
completely plastic, then all active characteristics which pass through the
base line terminate at the free edges of the triangle. The tangential
velocity is zero along the inactive characteristics, which run into the
elastic zone. Wherever inactive characteristics cross the base line, the
directions of active characteristics are fixed by the boundary velocity.
The angles e1 , 02 are constant along the free edges of the triangle. The
characteristics are therefore straight in any region in which both families
of characteristics are active, and the inactive characteristics are also
straight. Characteristics for plastic flow, which are similar to the
characteristics for elastic deformation, are illustrated by Figure (1).

The normal stress across the base line varies from a compression
stress near the center to a tension stress near the ends. The shear
stress across the base line is zero near the center, and is limited to 11'
near the ends where two principal components of stress are zero. The
shear stress is greater than 11' at intermediate points where there are
two principal components of stress with opposite signs. The maximum.
possible shear stress is1SX'o The average shear stress is approximately
(.482)X%

The Plastic Deformation of a Cylindrical Shell at Equilibrium

That portion of any cylindrical shell on one side of a plane section
through the shell applies to the portion on the other side a longitudinal
component of force f . along the axis of symmetry, a transverse component
of force f2 perpendicular to the axis of symmetry, and a bending moment
9 about a transverse axis. The components of force at equilibrium are
constant along the axis of the shell, but the bending moment varies as a
linear function of distance along the axis.

The stress tensor T within the shell satisfies the vector equation

=0 (16)

which may be expanded into a system of three scalar partial differential
equations of the first order. Integration of these scalar equations by
parts through the thickness of the shell gives the components of stress at

RESTRICTED
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L 3

the surfaces of the shell in terms of the components of stress in the
interior.

It is assumed in the analysis that the shell is thin enough to permit

the variation of stress through the thickness of the shell to be adequately
represented by first order approximations. The integrals in the equations
of equilibrium are then replaced by the stress resultants and by the stress
moments in the shell. The major terms in the equations involve the stress
resultants only. The major terms determine the components of force f, and
f-2, and the bending moment #.. The minor terms in the equations involve
both stress resultants and stress moments. The minor terms determine the
distribution of stress near the point of application of a localized stress,
and are only important around the point of application in a local zone which
tends to contract with decrease in the thickness of the shell.

The components of stress at the surface of the shell satisfy the boundary
conditions at the surface. The principal axes of stress at a free surface
are parallel to the surface and the principal component of stress normal
to the free surface is zero. The boundary conditions introduce terms into
the equations of equilibrium which involve both the components of stress and
the distortion of the shell. The boundary conditions determine the stability
of the deformation.

The threshold for elastic instability under a longitudinal compression
would be reached when the longitudinal force is nearly equal to

in which 'E is Young's modulus, a is Poisson's ratio, and h is the thickness
of the shell. The critical force is the same for all shells of the same
thickness regardless of their radii. The critical stress increases with
decrease in radius, however, and a shell of small radius therefore yields
first and then buckles.

The stress tensor V in the shell under transverse stress has the
components in the matrix

X11 X12  S

Z12 X2 2  I23
RESTRICTED
SECURITY INFORMATION 14
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Many of the components are small when the components are referred to the
cylindrical polar coordinates r, 0, z. In the absence of stress from the
free Lurfaces of the shell the components of stress nearly satisfy the
relationships

X11 = X81 0 (17)

The major terms in the equations of equilibrium are then

_ 6X2S 1 ZX23 Mae
2 -20 -=0+ -- 0 (18)

The general solutions of these equations are

1X2 1 (0) S33 -zu1(q$) + U2(0) (19)

in which ul(k) and u2 (qI) are arbitrary functions of 0. The functions
u±(qb) and u2 (0) are determined by the boundary conditions at the ends of
the cylindrical shell. A plane section through the shell remains a plane
section if the functions ui(4) and u2 (q4) ace harmonic functions of the
form

U h)= cLO + clsirC64,(0 = 00 + 01cos4h (20)

in which the coefficient ao represents a uniform twist, the coefficient a,
represents a transverse shear, the coefficient 00 represents a uniform
elongation, and the coefficient 01 represents a uniform flexure. The
resultant forces lie in the plane 0 = 0.

The components of stress cannot exceed the condition for plastic
yielding

in which X" is the yield stress in Jhe conventional tension test.

In the special case of a cylindrical shell which is subject to a
uniform longitudinal force, the function u1 (qb) is zero and the function
u2 (0) is constant. The shell yields when the component of force f, is
given by the equation

f =27rahX" (22)

in which a is the radius of the shell and h is the thickness.

RESTRICTED
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In the special case of a cylindrical shell which is clamped at one end
as a cantilever and is subject to a transverse force at the other end, the
function u 1 (0) is variable, but the function u2(q6) is zero.

If the length of the shell is greater than a t/, the plastic deformation
of the shell is limited to two narrow zones next to the fixed end, where

0 = , and where q6 = n. The function u1 (4) in the plastic range o- w
given by the equations

X a
uj(4) = -- _sin V q(- G 0 = *s + (0at/3 7 (23)

in which 1 is the length of the sheli, and (k' is half the arc for each

plastic zone. The function u±(4) in the elastic range of 4 is given by the
equations

"•()= + ao - asinv •1 (-')

(124)u 1(q6) = ao + alsin(#-n) (7t + 0' < <5- '

in which the coefficients aot and a, are so chosen that u1 (O) and u;((d)
are both continuous at the limit of the plastic range. The ultimate
strength of the cantilever is reached when the component of force f,
and the bending moment N at the fixed end satisfy the equations

22
4ahX" a -z( ••••)(5

If the length of the shell is less than av'/,. the plastic zones are
limited to regions where 0 = I n. The plastic zones are parallel strips
on each side of the shell, which extend the full length of the shell to
the fixed end where they spread out .into narrow zones next to the fixed
end.

The function ui(k) in the elastic range of 9 is given by the
equation

al•) - sin•k (- + -< = '07E-')

RESTRICTED
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and the function uj(4) in the plastic range of k is given by the equations

Xý a I
I " (sin 0"<±0<y+ '7 (27)ua(/) =t/ -a si2 € ) i

UJ1 (y +< 7E)<a3 a2

The constants a, and y are so chosen that ul(±) and u'(0) are both con-
tinuous at the limits of the pldstic range where I = + I + 4". The ultimate
strength of the shell is reached when the component of orce f2 and the
bending moment H at the fixed end satisfy the equations

If2 = f- 4alh 11 _ (- = aX') (28) 1
_ -COS -_- -(15aVI12 /3 3s a 2

3a 2

The plastic zones of uniform stress tend to spread out over the shell as
* the length of the shell is decreased.

In the limiting case of a short shell which is compressed between two
plahe• frictionless surfaces, the plastic zone extends over nearly all of
the shell. The resultant force f on each end of the shell is perpendicular
"to the frictionless surfaces. The components of force f1 and f2 are given
in terms of the constant components of stress IY2 and X38 in the plastic
zone by the equations

f, = 27ah4ss - 4ahX2 3 tan ' - f cos 8 (29)

f 2 = 4ah/X2s = "I sin O (30)

in which 8 is the angle of obliquity between the normal to the plane surfaces
and the axis of the shell. The force f itself is given in terms of the yield
stress X' by the equation

The 2Prah" f:os p i (31ki/l+; 7r•sin•Oo~

The Plastic Deformation of a Hood at Equilibrium

The hood of a common projectile is secured to the nose of the projectile
with soft solder. The nose of the projectile applies to the hood a shear
stress which is relatively small in comparison with the other stresses

RESTRICTED
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within the hood. The principal axes of stress at the nose of the projectile
are therefore nearly parallel to the surface of the nose while the principal
axes of stress at the free surface of the hood are truly parallel to the
free surface. The condition of equilibrium for relative motion of the hood
over the ogive is expressed by the equation

d z
-(rh'Xs) - h'X 2-rX/1+(-L) = 0 (32)

*dr dr

in which r, z are the cylindrical polar coordinates of a point on the nose
contour, X2 is the tangential stress in the circumferential direction, X8
is the tangential stress in the longitudinal direction, X1 is the yield
stress of the solder in shear, and h' is the variable thickness of the hood.
The components of stress under plastic flow satisfy the condition

T1'- x~x + 2 r 33

in which X' is the stress in the conventional tensile test. The component
of stress X8 is zero at the after edge of the hood and the components of
stress at other positions 'may be found by integration of the equation of
equilibrium. Near the tip of the hood where r is equal to zero, the equa-
tion of equilibrium for the hood becomes identical to the equation of
equilibrium for an expanding hole in a thin plate.

Me_.ae c Deformation of Bars and Tubes of Mild Steel.

Several investigations of the elastic instability of thin walledcylinders under compression have been reported in the literature 1, 2, 3.

The longitudinal force which induces buckling depends upon the number of
lobes which are formed. The actual force for two or more lobes has been
found to be less than three fifths of the ideal force for a symmetrical
wrinkle. The force is independent of radius when elastic buckling occurs,
but the stress is constant when plastic yielding occurs. The force or
stress is independent of the length of the cylinder.

Numerous static tests on bars and tubes under combined axial tension
and internal pressure have been reported in the literature 10, 11, 12

The strains in these tests are uniform as long as the forces in the
specimen are increasing. When the rate of work hardening is balanced by
the rate of contraction of'diameter or thickness the forces in the
specimen are at a maximum. The uniform strain then becomes unstable

with respect to a localized strain and the specimen necks down or bulges

RESTRICTED
SECURITY INFORMATION 18



I -I

RESTRICTED NPG REPORT NO. 954

Analytical Summary Part V Plastic flow in bars and shells

out according to the type of loading. The specimen finally fractures in
the neck or bulge. The fracture is circumferential under axial tension
and is longitudinal under circumferential tension. Estimates of the
stress and strain at fracture may be made on the basis of measurements
of the decrease in thickness, the distortion of surface grids, and the
curvatures of the specimen just prior to fracture.

The variation of strain in the neck of a round bar has been investi-
gated by Bridgman 6, who bored out tension test specimens and silver
soldered cylindrical cores into the bores. When the composite speciments
were pulled, each layer of silver solder outlined a deformation contour.
At 92% reduction of area, the ratio a/R between the transverse radius a
at the neck and the longitudinal radius R of the neck was 1.6, and the
strain on the axis exceeded the average strain by 24%.

A plausible family of deformation contours have been derived from
the photographs of sections through the specimens. A surface in the
medium which was originally plane and orthogonal to the free surface
before deformation, becomes curved* during deformation while it remains
orthogonal to the free surface. If the curved surfaces in the neck were
a family of confocal ellipsoids, the strain on the axis would exceed the
average strain by 23%., The parametric equations for an ellipsoid in the
neck are

z =Xa + aR cose r = + sinG (34)

in which r, z are cylindrical polar coordinates of a point on the ellip-
soid and X, 6 are parameters, with X'<< 1. The ellipsoid satisfies the
limiting condition

dz z - (r = a) (35)
dr R

at th6 surface of the specimen. The ratio between the value of z on the

* The shape of the deformation contours might be revealed by a macroetch
pattern in a suitably oriented specimen, but the patterns which have been
examined so far have been inconclusive.
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axis and the average value of z is given by the expression

3 a

a 
1

R

from which the strains may be derived. The radii of curvature at the neck
of a large number of specimens have been measured by Bridgman.

The variations of strain in the necks of rectangular bars have been
investigated by Miklowitz 9 , who measured the distortion of grids on the
surfaces and measured the variation in thickness. Representative strains
in a square bar are illustrated by the table:

location el e2  es

axis (-.42) (-.42) (+1.93)

face (-. 34) -. 45 (+1.76)

edge -o34 -. 34 +1.30

in which el, e2 , es are the strains perpendicular to a face, parallel to
the face, and parallel to the axis. Measurements of surface strains do
not deteimine the distribution of internal strain, and the internal strains,
which are enclosed in parentheses, are plausible values, which are consistent
with the measured average strain and the concave curvature of the faces.

The dimensions of the zone of necking in a strip of sheet steel are
limited by restraints on the edges of the strip. The necking at the edge
of the strip imposes a restraint on the distribution of strain in the
center of the neck. A cross shaped depression is formed in the neck of a
long strip with a decrease in thickness at the center which is twice the
decrease in the thickness at the edge. The zone of necking is further
limited by head restraint in a short strip, and the central depression is
wide and short. The longitudinal radius of curvature R of the faces would
be least in the limiting case of a strip with constrained edges. Thickness
profiles in specimens with flanged edges have been measured by Baranskie.
'Specimens of various widths were compared in order to eliminate edge effects.
The curvature of the neck increased slowly with elongation until the trans-
verse restraints were established by necking in the flanges, but the final
variation of curvature may be correlated with Bridgman's measurements of
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curvature if the variable

/2 R

for a sheet of thickness h is assumed to be equivalent to the variable

a

for a bar of radius a.

The variation of stress in the neck of a round bar has been analysed
by Bridgman7 who assumed that the flow stress is uni-xial with a constant
magnitude but with a variable orientation, and assumed that the principal
axis of tension is orthogonal to a family of paraboloids. An experimental
check on Bridgman's correction is possible with the aid of published data
on tubes and bars. An experimental determination of the correction was
made by Korber and Muller 5 , who measured the contours of necked specimens
at various stages of elongation, and then machined a series of new
specimens to the measured contours. The machined specimens were first
pulled to maximum load before machining, and were then pulled to fracture
after machining. The experimental correction for necking is consistent
with the calculated correction to within the experimental error. That
the stress strain curves for tubes and round bars are the same for axial
loading has been observed by Maieri° and by Davis and Parkeri 2 . A value
for the curvature in the neck of one particular tube has been given by
Davis 11. The correction for necking in this tube is consistent with the
correction for necking in a bar at the same strain.

The stress and strain in tubular specimens of mild steel have been
measured by Maier and by Davis. The octahedral shear stress was nearly
the same function of the shear strain function, for each combination of
internal pressure and axial loea. The specimens fractured when one
principal component of stress reached a critical limit*, but the fracture
stresses for longitudinal fracturei were 25% less than the fracture stresses
for circumferential fractures in the case of Davis' specimens, and was 12%
less in the case of Maier's specimens. That the difference in stress is

SDavis quotes circumferential stresses which exceed the fracture stress
for longitudinal fractures in specimens which fractured circumnferentially,
but the quoted values are not corrected for necking or balging. Davis gives
an estimate of the curvature of only one specimen. Inspection of the photo-
graphs of the specimens indicates that a correction for bulging in the
other specimens would probably bring the stresses into agreement.
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probably the result of anisotropy between the axial and circumferential
directions is shown by the data of Davis and Parker, who obtained a
difference of only two or three percent. That there was no significant
anisotropy between the radial and circumferential directions is
probably shown by the similarity in the fractures of two of Davis'
tubular specimens, which were cut from the original bar stock with the
axes of the specimens parallel and perpendicular to the axis of the
original bar stock The specimens were tested under pure internal
pressure, and fractured longitudinally with respect to their own axes.
The data on tubular specimens are not inconsistent with the assumption
that the fracture stress is increa;ed by 4% for a 2-fold increase in
shear strain function, and is independent of the isotropi-i tension as
long as the isotropic tension is positive. The fracture stress in a
tension test bar has, however, been shown by Bridgman 6 to be increased
by a prestrain under hydrostatic pressure, and the fracture stress in
wire is increased by cold drawing. The fracture stress in a tubular
specimen is less than the fracture stress in a tension test bar which
is cut from the wall of the same tubular specimen. The fracture stress
in a specimen may be influenced by size and shape. The fracture is pro-
pagated on a plane of maximum tension, or on a plane of maxLmum shear,
or may switch from one plane to the other, The plane of propagation is
influenced by the isotropic tension,

Data have been obtained at the Naval Proving Ground on the steel in
the 37mm PP Type T21 projectiles. A longitudinal tension test specimen
and a longitudinal compression test specimen were machined from one pro-
jectile and static stress-strain diagrams have been obtained.

The stress in the compression test was greater than the stress in
the tension test at the same values of the shear strain function. The
difference in stress was equivalent to an increase of 15% in the shear
stress per 100,000 (lb)/(in) 2 increase in normal pressure.

Lead foil was used for lubrication in the compression test, but the
lead foil was pinched off at the perimeter of the specimen, and the free
surface was barrelled. The specimen was sectioned after compression and
the section was polished and etched. Average deformation contours have
beeni derived from the etch pattern and are illustrated by Figure (9).
The deformation contours are not orthogonal to the interface between
the specimen and the lead foil, as a result of a shear stress in the
lead. The principal axes of stress at the interface were tilted three
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degrees out of the normal by the shear stress. The thickness of the
specimen also varies with radius, and contributed to the variation in the
orientation of the principal axes. A correction* which is valid in the
limiting case of a thin specimen has been calculated and applied to the
average stress in the specimen. The correction is based on the assump-
tion that the shear stress at the interface is constant and is balanced
by an isotropic pressure in the interior which is nearly uniform
through the thickness of the specimen. The correction amounted to 15%
at the final strain.

Metallographic examination of the compression specimen did not reveal
any fractures in the specimen, Representative strains in the specimen
are given in Table V. The static force-compression curve is given in
Figure (3).

The upper and lower static yield points in the longitudinal tensile
test were 33000 (lb)/(in)2 and 30000 (lb)/(in) 2  The static tensile
strength was 56000 (lb)/(in) 2 . A cup and cone fracture occurred at 65%
reduction of area. The stress in the neck has been corrected for curva-
ture of the neck with the aid of Bridgman's data.

Miniature tension test specimens with circular test sections were
cut from the bases of two other projectiles. The axes of tension in the
specimens were transverse to the axes of the projectiles, and the test
sections were offset four mm from the axes of the projectiles. The trans-
verse ductility was less than the longitudinal ductility. A cylindrical
ring was cut from the outermost layer of one projectile. The ring was
carefully flattened out and was cut into tension test specimens with
square test sections. The inner surface of the ring was located three mm
from the free surface of the original projectile. The maximum strain at
fracture in the ring, after flattening and pulling, was the same as the
average strain at fracture in the miniature tensile specimens, and the
tensile strength in the ring was greater than the tensile strength near
the axis. The hardness of the projectile may not have been perfectly
uniform.

The stress and strain at fracture in the specimens of the PP pro-
jectiles are summarized in Table VI. The principal components of stress
X1 , X2, Xs, and the principal components of strain el, e2 , es are the
components in the radial, circumferential, and longitudinal axes of the
projectile.

* The necessity for ccrrection could be avoided by the use of platens and

specimens with conical faces.
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The static stress-strain diagrams and the microstructure of the steel
in the PP projectiles show that the projectiles are made of an annealed
low carbon steel similar to the mild steel which has been extensively
reported in the literature. The grain size was number 7 on the ASTM 'Scale
of grain sizes. The thermal relaxation time for grains of this size is
2 microseconds.

PLASTIC FLOW

The Impact Compression of a Cylindrical Bar

The principal axes of stress at the free surface of the bar are
always parallel to the free surface, and the principal component of stress
normal to the free surface is zero. The principal axes of strain are also
parallel to the surface of the bar, and a line element in the medium which
was normal to the free surface before deformation is still normal after
deformation.

A plane longitudinal compression wave is first generated in a long bar
when it is struck on the end by a flat hammer. The longitudinal wave is
propagated along the bar with a velocity equal to or greater than (X/p)-*,
in which x is the bulk modulus of the medium and p is the density. The
medium just behind the wave front is in a stne of irrotational flow with
a uniform particle velocity parallel to the axis of the bar. The strain
in the longitudinal wave is uniaxial, with a finite component of strain
in the direction of propagation, but with the other two components of
strain equal to zero. The stress in the medium is a compression stress
in the direction of propagation with a smaller compression stress in the
plane of the wave front.

The initial longitudinal wave does not, therefore, satisfy the
boundary conditions at the free surface of the bar, and is reflected and
diffracted approximately as illustrated in Figure (5). Both longitudinal
and transverse waves are required by the boundary conditions. The dif-
fracted waves leave the free surface of the bar in a state of flow with
a velocity which is greatest and perpendicular to the surface near the
point of impact, but is least and at a small angle to the surface at a
distance from the point of impact. The surface of the bar becomes
distorted as the flow progresses. The distortion is controlled by a
transverse wave of gradually increasing amplitude which transforms the
radial motion into axial motion.
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In the limiting case of a slowly moving hammer the transverse wave is

able to keep the particle velocity in the medium nearly uniform over a
cross section of the bar. The motion of the bar is then given by von
Karman's analysisis, let 19 of plastic waves. The equation of motion is

B 6Z B d X836

Zt 2  Tz 1+e. dýes 1+e8 9 3g 36

in which Az is the axial displacement of a particle in the medium, x is the
initial coordinate of the particle, X3 is the stress along the axis of the

Sbar, 
and es is the linear strain along the bar. The force on any section

of a bar which was initially of unit cross sectional area is Xe/(l+es).
The strain es may be set equal to a function #y(z/t), and the displacement
Az is then given by the equation

AZ iy -f ý()dz (37)

The particle velocity /i is given by the equation

& f- -y()dz = o (-)deg (38)Z. e t _ t

Substitution of the function Az into the equation of motion leads to the
relationship

z (39)
t p die9  Y+ e.,

in which c is the phase velocity. The particle velocity /i is given in
terms of the phase velocity c by the alternative equations

* ~•S==-cdeg X-1d(.T--) (40)

P c L+es
The leading phase of the wave is elastic, and is propagated at the high
velocity (E/p)*. The elastic phase is trailed by a zone of increasing
strain, and this zone is followed in turn by a plastic zone of uniform
strain.

The leading phase of the primary wave in a bar with a free end
is reflected, from the end as an elastic unloading wave, which at first
cancels the force in the bar. The unloading wave travels back along
the bar until it encounters the plastic phase of the primary wave. The
decrement in force which the unloading wave transmits is then reduced to
a small fraction of its initial value as the unloading wave continues
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[ into the plastic zone, and a new elastic wave is propagated rapidly out
again toward the free end of the bar. A new plastic zone begins at the
boundary where the plastic phase of the primary wave has interacted with
the elastic phase of the unloading wave. There is a difference of strain
across this boundary after the interaction, but there can be no dif-
ference in the transmitted force or in the particle velocity. The ratio
between the decrement of strain in the old plastic zone and the decrement
of strain in the new plastic zone is therefore given qualitatively by the
expression c2/c 2 , in which c is the plastic phase velocity and co is the
elastic phase velocity. The ratio between the decrement of force in the
old plastic zone and the increment of force in the new elastic wave is
given qualitatively by the expression 2c/(c+c0 ).

After the interaction between waves the unloading wave in the old
plastic zone soon reaches the hammer, where it would be reflected without
change in amplitude or phase if the hammer were rigid, and the new elastic
wave soon reaches the free end of the bar where it is reflected as a new
unloading wave.

The force in the plastic phase is decreased and the particle velocity
is increased step by step as the elastic waves are reflected back and forth
between the plastic zone and the free end of the bar. The plastic zone
approaches the free end but never quite reaches it, because the frequency
of reflection increases-as the distance closes up. The progress of the
plastic zone can be followed qualitatively by graphical methods1 7.

The force-compression curve has an inflection point at a particular
value of the strain, and at this point the phase velocity c is a minimum.
A larger strain than the critical strain for minimum phase velocity would
be propagated at a greater velocity, and would overtake the critical
strain. The formation of a shock wave is believed to occur when the impact
velocity is greater than the particle velocity for a minimum phase velocity.
The thickness of the shock wave in the direction of propagation is probably
comparable with the radius of the bar. Associated with the shock wave is a
radial displacement of the surface of the bar. The acceleration of the
medium at the surface of the bar requires a dynamic pressure just ahead of
the wave front and a dynamic tension just behind. The dynamic pressure
sets the medium at the surface of the bar into motion in a radial direction,
while the dynamic tension brings the radial motion to a stop. The dynamic
pressure likewise displaces the medium along the axis of the bar in the
direction of propagation, and the dynamic tension displaces the medium
back ag.ain. The dynamic stress sets up a strain rate in the medium whose
prii 1pal axis of comp -ession has an outward direction from a central
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zone in the shock wave. Such a radial distribution of strain rate re-
quires a plastic pressure for its maintenance. The force-compression
curve for the shock wave is therefore higher than the force-compression
curve for simple compression by the amount of dynamic stress and plastic
pressure. The force-compression curve fore the shock wave is a straight
line which touches the force-compression curve for simple compression
at two points, and is tangent to it at the lower point. The work done
on unit vbtlume of medium is equal to this area under the force-compres-
sion curve. The work done on unit volume in the shock wave is greater
than the work done on unit volume in simple compression, even though
the final strain is the same, because the principal axes of strain rate
rotate with respect to the medium in the shock wave.

For each particle in the medium there is a value of z which repre-
sents the initial coordinate of the particle. Passing over the particle
is some particular phase of the plastic wave. The phase velocity c is,
by definition, the rate of increase in the value of z which is associated
with the phase. The plastic wave therefore advances from particle to
particle and moves away from the point of impact as long as c is
finite*.

The shear strain function in the medium increases with increase
in the impact velocity until the strain reaches that value for which
there is a maximum in the adiabatic stress-strain curve for pure shear.

There would then be an instantaneous transition from homogeneous shear
strain to localized shear strain, Vhich is confined to a zone of
infinitesimal thickness, if there were no heat conduction in the medium
and if the flow stress were independent of strain rate. The localiza-
tion of plastic flow is limited to a finite maximum rate and to zones of
finite minimum thickness by the quenching effect of heat conduction.

* The actual velocity of propagation with respect to a stationary frame
of reference is given by the equation

dz a& dz 6Az
- +--- +-- = c(l+es) - fcdes
dt '3z d t btt

The actual velocity has a minimum at the inflection point in the force-compression curve. It has been postulated by White"6 that a steady

radial flow may develop near the point of impact if the impact velocity
exceeds this minimum velocity of propagation. The energy per unit volume
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The transition may occur by one of two mechanisms.

In the first mechanism, a spontaneous transformation may occur, in
which elastic energy in a specimen is converted into localized plastic
energy. The dimensions of a steel specimen must be very large, however,

2• for the occurrence of such a transformation.

In the second mechanism, deviations from thermal equilibrium are
gradually amplified during a steady plastic flow. The deviations from
thermal equilibrium arise from fluctuations in hardness from point to
point in the medium.

During a static deformation, a specimen remains in thermal equili-
brium, and the deformation may be continued beyond the maximum in the
adiabatic stress strain curve without an appreciable localization of
strain. A failure by shear may, however, still be initiated by a local
failure by cleavage.

The fluctuations in temperature increase in amplitude with increase
in strain rate. During a dynamic deformation, only the fine fluctua-
tions in temperature are smoothed out by heat conduction, while the
coarse fluctuations are nearly adiabatic, and the deformation may not be
continued appreciably beyond the maximum in the curve without a severe
localization of strain and a release of shear stress.

The velocity of propagation in a transverse wave vanishes when the
deformation passes through the maximum in the adiabatic stress-strain
curve for shear. In the limiting case of high velocity impact, there
is a zone in the interior of the bar which is reached only by the
longitudinal waves, and remains therefore essentially in a state of
irrotational flow.

The velocity, in the case of cylindrical symmetry, may be expressed
as a function of the cylindrical polar coordinates r, z and the time t.

of medium would then be a stationary function of position in the radial
flow. The outermost boundary of the zone of radial flow would, however,
increase in radius as the bar flowed into the zone of steady flow, and the
circumferential strain at the outer boundary would steadily increase. In
a ductile medium with a constant flow stress, the energy per unit volume

would increase indefinitely with increase in strain, and the energy per
unit volume of displaced medium within the zone of steady flow would there-
fore increase, whereas the flow of energy into the zone would be constant.
It is evident, therefore, that a steady radial flow cannot be maintained i
in the absence of fracture or fusion of the medium.
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The coordinate r is the distance from the axis of the bar and the coordinate
z is the distance from the plane face of the hammer. The velocity, in the
case of irrotational incompressible flow, is the gradient of a scalar
potential v which is a solution of Laplace's equation

Let the velocity potential be referred to axes which move with the hammer.
Before impact, the velocity potential iV for unit impact velocity Is x.
Just after impact, the velocity potential is given by the series expansion

SZ/= EC -e Jo(X r) + z (42)

in which Jo(Xr) is a Bessel's function of zero order and c=, Xg are
constants.

The derivatives of V are given by the equations

_- = + zxxcxe A. r)8 r

84 = + ZXce Jo(,,) - 1+ a, 0 (0 x r)-

8r (43

82

-- =" " -- -

r - •
A2 xc "J 0(xmr)

At the free surface of the bar, where the pressure is zero, the potential
satisfies the boundary condition

- =•i- (44)

The rate of change of potential at a point which moves with the free
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surface is given by the equation

. ~ NO) - (V4)=- {(vk)2 + 1) (45)dt 'at

The potential at the surface of a cylindrical bar which is just beginning
to flow is still z, and the coefficients X, must satisfy the boundary
conditions

Jo(Xxa) = 0 (r = a) (46)

in which a is the radius of the bar. The axial component of the potential
gradient would be zero at the surface of a rigid hammer. The coefficients
cz would then satisfy the condition

ZXvc.Jo(Xxr) = + 1 (z = 0) (47)

The functions (Xur)kJo(Xxr) are orthogonal in the interval 0 < r < a
and the coefficients c, may be evaluated by standard methods. They are
given by equations of the form

= 2 (48)
CXxa)Ji±(Xxa)

Contours of equal velocity potential and stream-lines are given in Figure
(6). The kinetic energy in the bar is given by the equation

1 1
-p f(VT) 2 dT : 2-f .ds (49)
2 2p

in which T is the volume of the bar and s is the surface area. The kinetic
energy, when referred to stationary axes, is given by the equation

27ip a 3 ~ X 3
=(1618)Vra 

3  (50)II 2•~,(Xxa)s-9 ( 68nJ(o

The series expansion gives a velocity at the free surface of the bar
which is normal to the free surface. The radial velocity is small at a
distance from the point of impact, but has a logarithmic singularity at
the edge of the cylinder where r = a and z = 0. In the neighborhood of
the edge, the series expansion of the radial velocity is given by the
limiting equation

- =- .4244 - - log z (r = a, z -0) (51)
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After a time interval the free surface of the bar is no longer
cylindrical, and the potential at the free surface is no longer z. The
potential in the bar may then be represented by the sum of two functions.
The first function is just the series expansion, which satisfies the
boundary conditions at the surface of impact, while the second function
is dependent upon time, and satisfies the boundary conditions at the free
surface. The second function may be generated by a continuous distribu-
tion of sources or sinks which are located just outside of the surface of
a cylinder which extends from z = - b to z = + co. The potential at the
cylindrical surface is then given in terms of the density q(z) of sources
by the equation

a +~ OD q (gz) dgd.:.J' 0 __________d _____+ z (r =a) (52)2 _7 -ovi(z - •L)= + 4a2 sin" 1c

and the derivatives of the potential are given by the equations

Sq (j) (1-0osk) d-dd L (r = a) (53)
" 2r -•q {(z - it)' + 4a' sin' 142

a +ODq(,)( - ui) cdgd - (~a
- + I - 1 (r a)

((z- 02) + 4a2 sin2 ýW}g

The substitutions
2a 1 I'YTT sinOk sin - 1 = (54)

introduce elliptic integrals. The potential at the cylindrical surface

is then given by the equation

S+ z (r = a) (55)

and the derivatives of the potential are given by the equations

q,. +(J+0+- k k{F(,) kE k))q(g)d. (r = a) (56)
r 2 47ra - 2 2

+ -- f •,)-q ,)p)dji-1 , ,
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The boundary conditions at the surface of impact are undisturbed by the
distribution of sources if the distribution is symmetric with resrect
to the plane z = 0.

The logarithmic singularity in the series expansion is cancelled for
z > 0 if the source density q(z) satisfies the limiting equation

4
q() = -log !1 (Z - 0) (57)

Inclusion of this logarithmic term in the source density introduces a
surface potential whose derivative with respect to z is given at z = 0
by the limiting equation*

a2,E kl Igj d-g 1- - ( = oa, z 0) (58)

.z 7,- (Z ) og 1 ýL- =

After a short time interval the surface of the bar is still nearly
cylindrical, and the surface potential is still nearly equal to z. The
partial derivative;,- of the potential at a cylinder of fixed radius a are
still nearly equal to the partial derivatives at the .free surface, and are
givei, approximately by the series expansion. The potential is therefore
given initially by a function w, which is a linear function of the time.
The function yp. satisfies the limiting equation

2= ) Z+ (r=a) (59)

in which the derivative with respect to r is given by the series expansion
for zero time. As ie flow continues, the potential deviates from the
function T1. Insofar as the deviation is monotonic, the actual potential
lies between the function 1 and a function ' which satisfies the limiting
equation

S= •t { 2r)• + - 1 + 2 (r = a) (60)
2 Zr a

The limiting value of k'E(-, k) is + 1 at z = 0. The .integral may there-
fore be evaluated with the 2 aid of the substitution of (1±m)z for •, and
with the aid of the relationship

+W" 1 1o 14a• • I" 0 +1 =1-- log oid=f ± Log I- da + log-d =• (+1) 2
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I ' i
The source density q(z) has been so adjusted by trial that the potential
is equal to T2 with t set equal to g. The two limiting potentials for
this time are compared in Table III. The potential 1,2 has a minimum value
of .2732 when z is .1556 a whereas the potential y2 has a minimum value
of .1387 when z is zero. The actual potential at z = 0 probably therefore
satisfies the inequality

.1387  <.2732 (r= a, z =0)

The minimum in the potential yj varies with time and may be differentiated
with respect to time.

A limit can then be estimated for the radial velocity, with the aid of
the boundary condition

2 -•= r ) -(r>a, z0) (61)B• t 2 ar

and the estimated displacement of the moving edge of the bar is given by
the integral

- dt

The results of integration are given in Table IV. The estimated deforma-
tion contours after a time interval of one third are illustrated byFigure M7.'

The ser.es expansion gives a strain rate which decreases along the
axis of the cylinder away from the point of impact, but increases along
the radius at the surface of impact. The series expansion gives a
maximum strain rate at the axis of the cylinder which approaches the
•imiting equation*

-a, 2 136)( 0 )(2

a

* The strain rate on the axis of a cylinder of unit radius is given by
the series expansion

2_

Y. eX*Z 1 (r = 0, a = 1)

which converges uniformly for z '> P but diverges for z 0. The limit
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Analytical Summary Part V Plastic flow in bars and shellsr-
as z approaches zero, but gives a strain rate which is infinite at the edge
of the cylinder where r = a and z = 0.

If the irrotational flow were allowed to continue indefinitely, the
flow in the bar would pass over into the 3teady flow in a stationary jet.
The velocity potential in a cylindrical jet which impinges on a plane surface
is identical to the velocity potential of two symmetrically opposing jets.
The velocity potential is given by an application of Green's theorem,

4 7ET+ fipV(-)ds - f - Vypds = 0 (63)
R R

in which R is the distance to a point on the free surface and s is the free
surface with normal directed outward. At the free surface of the jets, the
gradient of the stationary potential is constant ir magnitude and parallel
to the free surface. The potential is therefore given by the integral
equation

tfr.ywd (64)

in which W is the solid angle of a circular section of the free surface.
Formulae and tables which give the solid angle of a circular section are
published in reference (23). The surface geometry of a jet has been
adjusted by trial until the potential satisfies the integral equation.
The calculations were aided by some observations on the geometry of a jet
of tap water. Stream lines and contours of equal potential in the
stationary jet are plotted in Figure (8).

which the series approaches as z approaches zero may be evaluated with the
aid of a comparison between this series and the two auxiliary series

-7C V/ 2 1 (1m(m-e and + -- Z (-l)' J e- 2 d"4=1 4/ 2 =1 2- -ii

The differences between the three series are absolutely convergent, and their
derivatives with respect to z are conditionally convergent at z = 0. The
differences between the series may therefore be evaluated with z set equaL 4o
zero, while the limiting value of the third series as z approaches zero is
just

7r 7

- " 4  d4 = - 2.4666,/2 s_
4
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As the impact velocity approaches tha velocity of sound in the medium,
the zone of irrotational flow is compressed against the hammer. If-the
impact velocity were greater than the velocity of sound, a compression
shock wave would probably be formed ahead of the hammer.

Plastic Flow in Cylindrical Projectiles

The British1 3 , 14 have fired mild steel cylindrical projectiles against
face hardened plate and have recorded the length of the undeformed part of
each projectile. The dynamic yield point, for 0.2% compression, was
estimated with the aid of an analysis of the propagation of elastic waves
in the base of the projectile. The dynamic yield point was three times as
large as the static yield point. The impact velocities were in the range
from 380 (ft)/(sec) to 2750 (ft)/(sec), and the projectiles were mushroomed
on impact.

The group at the California Institute of Technology 19 have measured
the distribution of strain in cylindrical bars after impact compression.
The impact velocities were in the range from 22 (ft)/(sec) to 150 (ft)/(sec).
The strain was uniform near the point of impact in all specimens of copper
or steel. The tests incluided an annealed SAE 1020 steel with a yield point.
When the impact velocity was 50 (ft)/(sec) or less the plastic strain at the
point of impact was reported to be zero. It was therefore concluded that
the elastic limit under dynamic loading was at least twice the yield point
under static loading. The strain was uniform near the point of impact in
specimens of lead when the impact velocity was small, but the specimens
were mushroomed outward at the point of impact when the impact velocity
was greater than 104 (ft)/(sec). Recently published20 photographs* of the
specimens show that the deformation is similar in appearance to the irrota-
tional flow in Figure (7).

No dynamic stress-strain data on the steel in 37mm PP Type T21 pro-
jectiles are-available, but the steel is probably similar to the mild steel
which has been investigated by Manjoine and Nadai 2 i. They obtained stress-
strain diagrams on tensile specimens at various temperatures in the range
from 200C to 12000C and at various strain rates from 10-8 (see)-' to 10-s

isec)- 1 . At low temperatures the stress decreased and the ductility
increased with increase in temperature. Strain aging occurred at high
temperatures. The stress increased to a maximum and the ductility decreased
to a minimum as the temperature was increased, through the strain aging range.
When the temperature was increased still further, the stress again decreased
with increase in temperature.

" These photographs were not previously available.
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At low temperatures the stress increased with increase in strain rate.
At high temperatures, the strain aging range was shifted to a higher
temperature by an increase in strain rate. The variation of stress with
temperature and strain rate is illustrated by Figure (2).

The dynamic properties of the steel in the PP projectiles have been
estimated, with the data for mild steel as a guide. At a strain rate of
1000 (sec)-l the dynamic tensile strength is probably 84000 (lb)/(in)'.
An adiabatic force-strain curve for compression has been calculated and
is plotted in Figure (3). This force-compression curve leads only to
plastic shock waves. The phase velocity and the particle velocity in the
shock waves are plotted in Figure (4i.

The calculated maxima in the adiabatic stress strain curve for shear
are summarized by Table IX. Two maxima occur in the adiabatic stress-
strain curve as the result of strain-aging. The formation of a fault, if
it starts at all, probably does not continue indefinitely with the forma-
tion of an open fracture, but is trapped instead by strain-aging.

The beveled faces of five 37mm PP Type T21 projectiles have been
machined off flat to form cylinders with sharp edges. The length of each
projectile was 3.90 (in) and the mass of each projectile was 1.84 (lb)
after machining. The five projectiles were fired with velocities in the
range from 650 (ft)/(sec) to 1450 (ft)/(sec) against 3" Class A Plate No.
55E65285, which was polished slightly by the impacts. The projectiles
would not hold a permanent magnetization, and the impact velocities
could not be obtained with the conventional magnetic solenoids. The
velocity of one projectile was measured with contact screens. The
velocities of the other projectiles were estimated on the basis of the
weight of powder charge.

The projectiles were sectioned and etched after impact. Profiles
of the projectiles are illustrated in Figure (11). Deformation contours
have been derived from the etch pattern of one projectile and are plotted
in Figure (10). Representative strains in the projectile are listed in
Table VII. The principal components el, e2 , es of strain are the com-
ponents in the radial, circumferential, and longitudinal directions of
the original projectile. The strains at the edge are estimated on the
assumption that the final strain may be represented by a combination of
compression in the longitudinal axis and a fold at the edge. The
principal axes of strain would remain orthogonal to the surfaces during
such a deformation. The strain was a pure compression on the axis of the
projectile, but varied from shear at the impact surface to tension at the
free surface near the edge of the projectile.
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Several projectiles fractured on impact. The fractures were propagated
along two different surfaces of maximum shear stress. The occurrence of two
surfaces of fracture may be correlated with the anisotropy of the steel and
with the calculations of strain near the edge. At the impact surface, where
the strain was a shear, the fracture surface contains the radial axis, even
though this is the more ductile of the three surfaces of maximum shear stress,
At the free surface, where the strain was a symmetrical tension, the fracture
surface contains the longitudinal axis, and is the less ductile of the two
surfaces of equal shear stress.

The projectiles fractured into petals which remained attached to the
projectiles. The edge of the circular face of each projectile became the
tips of the petals. The circumferential strain it fracture may be estimated
with the aid of measurements of the total width of the tips of the petals
it is assumed that no appreciable circumferential deformation occured in the
petals after the release of stress by fracture. The circumferential strains
are listed in Table VIII. The projectiles fractured when the shear strain
function was equal to .30

The first maximum in the adiabatic stress-strain curve for shear occurs
at a shear strain function equal to -50 ± .05. A homogeneous adiabatic
tension becomes unstable with respect to a localized adiabatic shear at a
shear strain function equal to .9 It is therefore unlikely that the observed
fractures arose from an adiabatic instability. The shear fractures were
probably initiated by cleavage fractures. The difference between the shear
strain functions for an adiabatic cleavage and a static cleavage is a result
of the difference in flow stress. After an adiabatic strain in tension to a
shear strain function equal to .30, the temperature is 700C, and the dynamic
flow stress at the edge of the projectile is 125000(lb)/(in) whereas fracture
-in the static tests occurred at a shear strain function of 274 and at a tension
stress of 126000(lb)/(in) 2 . The agreement between these calculated values of
the fracture stress is gratifying, but may be fortuitous.

4
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TABLE I

Complex roots of the transcendental equation

27r
sin 2(v+l • + (v+l)sin- = 0

4 4

order v

1 1.740 + 1.119 t

2 5.845 ± 1.681

3 9.885 ± 1.970 i

4 13.908 ± 2.167 i
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TABLE II

First order solution of elastic equations for a steel quadrant

211Ar2.74 2.74

r 2 .*740 sin (1. 119 log r) r 740 cos (1. 119 log r)

-. 0253 +.1169 i -. 0586 -. 0631 i sin(l.740T) sinh(l.I19p)

+.0586 +.0631 i -. 0253 +.1169 i cos(1.740,p) cosh(1.ll9ý)

-. 0743 -. 2568 i +.1173 -. 1328 i sin(3.740,) sinn(l.119y)

-. 1173 +. 1328 i -. 0743 -. 2568 i cos('3.740") cosh(1l.l19cp)

24rAcp

r2.740 sin(l. 119 logr) r2. 7 4 0 cos(J.119 logr

S-. 0854 -. 4832 i +.-2256 -. 1362 i sin(I.740p) cosh(i.119T)

$ -. 2256 +.1362 i -. 0854 -. 4832 i cos(1.740q)) sinh(l.,i19q)

+. 1173 -. 1328 i +. 0743 +. 2568 i sin (3. 740w) cosh (1. 119w)

-. 0743 -. 2568 i +.1173 -. 1328 i cos(3.740•) sinh(i.I19•)

X11

1. 740 1.74

r . sin(1. 119 log r) r .74o coa(l. 119 log r)

+.113 +.,273 i -. 1122 +.,213 i sin(l.740cp) sinh(l.,ll9p)

+. 122 -. ,213 i +.113 +.,273 i cos(l.740(>) cosh(1.lI19()

-.-335 -. 555 i +.238 -. 651 i sin(-3.740•) sinh(I.lI19•)

-. 238 +. 651 i -.- 335 -. 555 i cos (-3. 740") cosh(l. I19f)
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TABLE II (continued)

r1.740 sill(1.119 logr) r '740 cos (1. 119 logr)

+.7,88 -. 779 +.410 +.880 i sin(l. 74(rP) sinh(lll9cp)

-. 266 -. 38W i +.-38 -. 779 i cos(l.740q') cosh(1.119)

+.335 +.555 i -. ,238 +-651 i sin(13.?40Cp) sinh (i.119q)

+.238 -. 651 i +.-335 +.555 i cos (3.740q) cosh(l. l9q)

x1 2

r1.4 sin (J. jig log r) •. cos(I.119g log r)

-. 266 -. 334 i +.138 -. 526 i sin(l. 7409) cosh(l, ll9()

-. 138 +.526 i-.266 -.- 334 i cos(l. 740K) sinh(lll9(P)

+.238 -. 651 i+.335 +.555 i sin ('3.740) cosh(lll9rf)

-. 335 -. 555 i +.238 -. 651 t cos(-3.740q7) sinh(l.119q')
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I:TABLE III

A comparison between the limiting potentials, for a
cylinder of unit radius, at a time equal to one third

i4

- 0 .1 .2 .4 .6 .8 1.0
a

S.2990 .2825 .4224 .6074 .8027 1.0010

Y2 .1387 .1704 .2377 .4114 .6038 .8014 1.0005

ii

gI
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TABLE IV

The estimated radial displacement of the edge of a cylindrical bar
of unit radius, during irrotational flow after impact at unit velocity

t .0001 .0010 0100 .1000 .-3333

__ 4.84 3.61 2.48 1.61 l.-31
ar

- _dt .0005 .0041 .030 .197 .53

4
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TABLE V

The final strain on the median plane of a compression specimen of the steel in
the 37•mn PP Type T2i projectile. The specimen was initially a cylinder, .492"S dism. x . 5" gage length.

location center edge

el + l.-32 + .18

e2 . +l, 1. 3a .30

e -. 81 -. 63

.. -X m 1.01 .79
.3
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TABLE VI

The approximate stress and strain at fracture of the steel in 3".= PP Type T21
projectiles at a tensile strength of 56000 (lb)/(in)2

specimen longitudinal transverse tra~sverse

cross section .505" diam. .126" diam. .125" square

gage length 1" .5" .5"

% reduction of area 64.7 58.1 52.9

fracture cup and cone cup and cone shear

+ 31000 + 23000 + 21000
X2• + 31000 + 1,21ooo + 126000+ 1-33000 + -23000 + ,21000

S+ 5000 + 52000 + 56=00

- .4
- .44 - .39 - M

ie2 - .44 + 1.64 + 1.23

e + 2.19 - .-39 - .33

l'2Z(e. e X 1.24 .96
3

The structure of the fracture was broken up by a relatively coarse transverse
fiber.
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TABLE VII

/pproximate strains in a 37mm PP Type T21 projectile after impact at 654 (ft)/(sec).

center, edge, edge,
location impact face impact face free surface

?4;- -p

e. + 60 4 0418

e + 60 + ,47 + 47t 2

e- 61 - 34 - .17

e )(e2 .57 .33 .-30
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TABLE VIII

Impact tests with 3z•mn PP Type T21 projectiles. Initial diameter of projectiles
was 3.69 cm.

Impact Upset 1
Velocity Diareter Fracture e2  R e:)2

(ft)/(sec) cm 3

(650) 5.'31 none .44 .-29

654 5.42 none .47 ..30

(650) 5.58 incipient .51 .-33

(650) 5.84 incipient .57 ..36

(1000) 8.1 shear .46 .'30

(1450) 12.5 shear .48 .-31
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TABLE IX

The estimated shear strain function at the maxima and minimum in the adiabatic
stress strain curve for shear in the steel of the 37mm PP Type T21 projectiles bt
a strain rate of 1000 (sec)-.

imax min max

1,
-5 L-m 3 3.0

3
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APPENDIX B - LIST OF SYMBOLS

a radius of a cylindrical shell or cylindrical bar

O • variable of integration

(X0, OI, 00, 01 arbitrary constants in the functions for cylindrical
; ~shells -

c plastic phase velocity

SCo elasti- phase velocity

Ca ¢coefficients in the series expansion of velocity
potential

X arbitrary constant in the functions for cylindrical
shells

el, e2 , es principal components of strain

'E Young's modulus

1, 6 2 , ES unit vectors in the radial, azimuthal, and axial
directions

E(!-,k) elliptic integral of amplitude _n and mod-lus k
2 2

f force

longitudinal component of force

f2 transverse component of force

F(11.k) elliptic integral of amplitude ½t and modulus k
2 2

0 half the arc of a plastic zone in a cylindrical shell S
uniform thickness of a shell
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h" variable thickness of a shell

identity tensor

Jo (Xr), Ji(Xxr) Bessel's functions

X bulk modulus

I length of a cylindrical shell

constax,.- in the series expansion of velocity potential

X, •elastic moduli

0, e parametric variables for deformation contours in the
neck of a cylindrical bar

M bending moment

ýt variable of integration

A' symmetry number of a sector

v complex index in the elastic equations for a plane
sector

solid angle

'p velocity potential

initial velocity potential

2 •limiting velocity potential
strain distribution and its derivative for a von Karman

wave
T stress tensor -

q(z) source density for irrotational flow in a bar
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-------------- ---------- ---------- ------------- -- -- -- -- -- -- ---

r, I, s cylindrical polar coordinates

r position vector

br displacement

* spherical polar coordinate

R radius of curvature

p density

s surface

a Poisson's ratio

t time

-rvolume

6 angle of obliquity

01., 02 parametric coordinates of characteristics for plane
plastic stress

uI(O), u2(W) arbitrary functions in the equilibrium of a
cylindrical shell

v particle velocity

x, y, z Cartesian coordinates

;, y, z components of velocity

I' yield stress in tension (steel)

Xs yield stress in shear (solder)

X1., X2, TS principal components of stress

X11, X22, X88, polar components of stress

128, X~j, I12
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NP9-48530 FIGURE (3)

FORCE- COMPRESSION CURVES FOR BARS OF PP PRCDJEC.TILE STEEL
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tNP9-4532 FIGURE (5)

THE COMPRESSION WAVE IN A CYLINDRICAL BAR ON IMPACT
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DEFORMATION CONTOURS FOR THE BALLISTIC TEST
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